Tim Brunson DCH

Welcome to The International Hypnosis Research Institute Web site. Our intention is to support and promote the further worldwide integration of comprehensive evidence-based research and clinical hypnotherapy with mainstream mental health, medicine, and coaching. We do so by disseminating, supporting, and conducting research, providing professional level education, advocating increased level of practitioner competency, and supporting the viability and success of clinical practitioners. Although currently over 80% of our membership is comprised of mental health practitioners, we fully recognize the role, support, involvement, and needs of those in the medical and coaching fields. This site is not intended as a source of medical or psychological advice. Tim Brunson, PhD

Flexible, task-dependent use of sensory feedback to control hand movements.



We tested whether changing accuracy demands for simple pointing movements leads humans to adjust the feedback control laws that map sensory signals from the moving hand to motor commands. Subjects made repeated pointing movements in a virtual environment to touch a button whose shape varied randomly from trial to trial-between squares, rectangles oriented perpendicular to the movement path, and rectangles oriented parallel to the movement path. Subjects performed the task on a horizontal table but saw the target configuration and a virtual rendering of their pointing finger through a mirror mounted between a monitor and the table. On one-third of trials, the position of the virtual finger was perturbed by ±1 cm either in the movement direction or perpendicular to the movement direction when the finger passed behind an occluder. Subjects corrected quickly for the perturbations despite not consciously noticing them; however, they corrected almost twice as much for perturbations aligned with the narrow dimension of a target than for perturbations aligned with the long dimension. These changes in apparent feedback gain appeared in the kinematic trajectories soon after the time of the perturbations, indicating that they reflect differences in the feedback control law used throughout the duration of movements. The results indicate that the brain adjusts its feedback control law for individual movements "on demand" to fit task demands. Simulations of optimal control laws for a two-joint arm show that accuracy demands alone, coupled with signal-dependent noise, lead to qualitatively the same behavior.

J Neurosci. 2011 Jan 26;31(4):1219-37. Knill DC, Bondada A, Chhabra M. Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14618, USA. knill@cvs.rochester.edu

Human basal ganglia and the dynamic control of force during on-line corrections.



Natural movements are corrected in part by the generation of submovements, occurring early in a movement such that they amend an ongoing action. Submovements are associated with activity of the basal ganglia, implying a role for the structures in error correction. In parallel, the basal ganglia are linked to the generation and control of force amplitude, change, and duration. Here, we tested whether activity in human basal ganglia is associated with submovements generally, or was specific to a condition where the submovements only occurred in the face of unexpected proprioceptive error. Submovements were induced by introducing unexpected and variable viscous loads (augmenting the need for trial-specific grip forces) or by reducing target size (augmenting the need for visually guided on-line control) in a one-dimensional target-capture task. In both cases, subjects compensated for the increased task difficulty by generating corrective submovements, which were closely matched in frequency and type. Activity in the internal segment of the globus pallidus and subthalamic nucleus correlated strongly with the number of submovements during the viscous challenge but not with the target challenge. The effects could not be explained by kinematic differences, i.e., movement amplitude or average number of submovements. The results support a specific role for the basal ganglia in error correction under conditions of variable load where there is a need for the dynamic control of force within an ongoing movement.

J Neurosci. 2011 Feb 2;31(5):1600-5. Grafton ST, Tunik E. Sage Center for the Study of Mind, Department of Psychology, University of California, Santa Barbara, California 93106, USA. grafton@psych.ucsb.edu

© 2000 - 2025The International Hypnosis Research Institute, All Rights Reserved.

Contact