Tim Brunson DCH

Welcome to The International Hypnosis Research Institute Web site. Our intention is to support and promote the further worldwide integration of comprehensive evidence-based research and clinical hypnotherapy with mainstream mental health, medicine, and coaching. We do so by disseminating, supporting, and conducting research, providing professional level education, advocating increased level of practitioner competency, and supporting the viability and success of clinical practitioners. Although currently over 80% of our membership is comprised of mental health practitioners, we fully recognize the role, support, involvement, and needs of those in the medical and coaching fields. This site is not intended as a source of medical or psychological advice. Tim Brunson, PhD

Withaferin A inhibits activation of signal transducer and activator...



Full title: Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells.

We have shown previously that withaferin A (WA), a promising anticancer constituent of Ayurvedic medicine plant Withania somnifera, inhibits growth of human breast cancer cells in culture and in vivo in association with apoptosis induction. The present study builds on these observations and demonstrates that WA inhibits constitutive as well as interleukin-6 (IL-6)-inducible activation of signal transducer and activator of transcription 3 (STAT3), which is an oncogenic transcription factor activated in many human malignancies including breast cancer. The WA treatment (2 and 4 ?M) decreased constitutive (MDA-MB-231) and/or IL-6-inducible (MDA-MB-231 and MCF-7) phosphorylation of STAT3 (Tyr(705)) and its upstream regulator Janus-activated kinase 2 (JAK2; Tyr(1007/1008)) in MDA-MB-231, which was accompanied by suppression of their protein levels especially at the higher concentration. Exposure of MDA-MB-231 or MCF-7 cells to WA also resulted in suppression of (i) transcriptional activity of STAT3 with or without IL-6 stimulation in both cells; (ii) dimerization of STAT3 (MDA-MB-231) and (iii) nuclear translocation of Tyr(705)-phosphorylated STAT3 in both cells. To our surprise, the IL-6-stimulation, either before or after WA treatment, did not have an appreciable effect on WA-mediated apoptosis in MDA-MB-231 or MCF-7 cell line. The IL-6-stimulated activation of STAT3 conferred a modest protection against WA-mediated suppression of MDA-MB-231 cell invasion. General implication of these findings is that WA can trigger apoptosis and largely inhibit cell migration/invasion of breast cancer cells even after IL-6-induced activation of STAT3, which should be viewed as a therapeutic advantage for this agent.

Carcinogenesis. 2010 Nov;31(11):1991-8. Epub 2010 Aug 19. Lee J, Hahm ER, Singh SV. Department of Pharmacology & Chemical Biology, and University of Pittsburgh Cancer Institute, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Pittsburgh, PA 15213, USA.

TrackBacks
There are no trackbacks for this entry.

Trackback URL for this entry:
https://www.hypnosisresearchinstitute.org/trackback.cfm?1E4375A3-CDFB-9787-B89330824873186B

Comments
© 2000 - 2023The International Hypnosis Research Institute, All Rights Reserved.

Contact