Effect of artificial and human external qigong on electroencephalograms in rabbit.

External qigong emitted by a quartz crystal upon application of electric current was evaluated by its biological effects, such as changes in frequency-analyzed electroencephalograms (EEG) in rabbits and spontaneous electrical activity of the rat pineal gland. Physical properties of this external qigong cannot be evaluated by currently available physical means. Three types of EEG changes were produced depending on the intensity of current applied to the crystal. These changes corresponded fairly well to the dose-dependent EEG changes after intravenous administration of 5-hydroxytryptophan. A qigong-containing medal also produced similar EEG changes depending on threshold to qigong. Human qigong similarly influenced EEG. All EEG changes disappeared after pinealectomy or after application of methysergide (10 mg/kg), a serotonin antagonist. The rate of spontaneous electrical activity of the pineal gland was depressed by reorientation of the rat to the north or to the south, by qigong emitted by a quartz crystal, or by application of a qigong-containing medal. Human qigong also depressed this electrical activity. The EEG changes produced by external qigong might be caused by increased serotonin concentration in the pineal gland, since the pineal gland is responsive to qigong as well as the earth’s magnetic field, which is known to inhibit N-acetyltransferase by increasing serotonin concentration in the pineal gland. Hence, the finding that current-intensity-dependent EEG changes induced by quartz crystal-emitted qigong were analogous to dose-dependent EEG changes produced by 5-hydroxytryptophan might be attributed to increased serotonin levels by current-intensity-dependent inhibition of N-acetyltransferase by external qigong.

Takeshige C, Aoki T.

Dept. of Physiology, Showa University School of Medicine, Tokyo, Japan.